Geometric inequalities involving a,b,c,r,R

https://www.linkedin.com/groups/8313943/8313943-6359650907478597636
In a $\triangle A B C$, let a, b, c be its side lengths
R - its circumradius and r - its inradius, prove that
(a) $1 / a+1 / b+1 / c \leq \sqrt{3} /(2 r)$
(b) $1 / a+1 / b+1 / c \leq(1 / \sqrt{3})(1 / r+1 / R)$
(c**) $11 \sqrt{3} /(5 R+12 r) \leq 1 / a+1 / b+1 / c \leq(1 / \sqrt{3})(5 /(4 R)+7 /(8 r))$.

Solution by Arkady Alt, San Jose, California, USA.

Let $x:=s-a, y:=s-b, z:=s-c$ and $p:=x y+y z+z x, q:=x y z$. Also assume $s=1$ (due to homogeneity of inequalities. Then $x+y+z=1, x, y, z>0, a=1-x, b=1-y$, $c=1-z, a b+b c+c a=1+p, a b c=p-q, \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1+p}{p-q}, r=\sqrt{q}, R=\frac{p-q}{4 \sqrt{q}}$ and noting that $q=x y z(x+y+z) \leq \frac{(x y+y z+z x)^{2}}{3}=\frac{p^{2}}{3}$ we can to proceed to the proof of inequalities (a),(b),(c) in p,q notation:
Inequality in (a) becomes $\frac{1+p}{p-q} \leq \frac{\sqrt{3}}{2 \sqrt{q}} \Leftrightarrow 2(1+p) \leq \frac{\sqrt{3}(p-q)}{\sqrt{q}}$.
Since $\frac{p-q}{\sqrt{q}}$ as function of q decrease in $\left(0, p^{2} / 3\right]$ then $\frac{\sqrt{3}(p-q)}{\sqrt{q}}-2(1+p) \geq$ $\frac{\sqrt{3}\left(p-p^{2} / 3\right)}{p / \sqrt{3}}-2(1+p)=1-3 p \geq 0 ;$
Inequality in (b) becomes $\frac{1+p}{p-q} \leq \frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{q}}+\frac{4 \sqrt{q}}{p-q}\right) \Leftrightarrow 1+p \leq \frac{1}{\sqrt{3}}\left(\frac{p}{\sqrt{q}}+3 \sqrt{q}\right)$.
Since $\frac{p}{\sqrt{q}}+3 \sqrt{q}$ as function of q decrease in $\left(0, p^{2} / 3\right]\left(\frac{p}{t}+3 t\right.$ decrease for $t \in(0, \sqrt{p / 3}]$ and $\sqrt{q} \leq p / \sqrt{3}<\sqrt{p / 3}$ because $p<1)$ then $\frac{1}{\sqrt{3}}\left(\frac{p}{\sqrt{q}}+3 \sqrt{q}\right)-(1+p) \geq$ $\frac{1}{\sqrt{3}}\left(\frac{p}{p / \sqrt{3}}+3 p / \sqrt{3}\right)-(1+p)=0$.

Remark.

Note that $\frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right) \leq \frac{\sqrt{3}}{2 r}$ because $R \geq 2 r$ (Euler Inequality) and $\frac{\sqrt{3}}{2 r}-\frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right)=\frac{\sqrt{3}(R-2 r)}{6 R r}$. Thus, it was sufficient to prove inequality (b).
Also note that $\frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right) \geq \frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \Leftrightarrow \frac{1}{r}+\frac{1}{R}-\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \geq 0 \Leftrightarrow$ $\frac{1}{8} \frac{R-2 r}{R r} \geq 0$.
That is $\frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \leq\left(\frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right) \leq \frac{\sqrt{3}}{2 r}\right.$.
Well known inequality (Soltan and Meydman) $\frac{2(5 R-r}{3 \sqrt{3} R^{2}} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{(R+r)^{2}}{3 \sqrt{3} R r^{2}}$
but $\frac{(R+r)^{2}}{3 \sqrt{3} R r^{2}} \geq \frac{1}{\sqrt{3}}(1 / r+1 / R)$ because $\frac{(R+r)^{2}}{3 \sqrt{3} R r^{2}}-\frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right)=$ $\frac{(R-2 r)(R+r)}{3 \sqrt{3} R r^{2}} \geq 0$.

Since $\frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right) \leq \frac{1}{\sqrt{3}}\left(\frac{1}{r}+\frac{1}{R}\right) \leq \frac{\sqrt{3}}{2 r}$ then proof of inequality
(CR) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{1}{\sqrt{3}}\left(\frac{5}{4 R}+\frac{7}{8 r}\right)$ be at the same time proof of inequalities in (a) and (b).

But proof of inequality (CR) is much more difficult then two others.

Proof.

In p,q notation inequality (CR) becomes $\frac{1+p}{p-q} \leq \frac{1}{\sqrt{3}}\left(\frac{5 \cdot 4 \sqrt{q}}{4(p-q)}+\frac{7}{8 \sqrt{q}}\right) \Leftrightarrow$ $\frac{1+p}{p-q} \leq \frac{7 p+33 q}{8 \sqrt{3} \sqrt{q}(p-q)} \Leftrightarrow 1+p \leq \frac{1}{8 \sqrt{3}}\left(33 \sqrt{q}+\frac{7 p}{\sqrt{q}}\right) \Leftrightarrow$

$$
\begin{equation*}
(1+p)^{2} \leq \frac{77 p}{32}+\frac{1}{192}\left(1089 q+\frac{49 p^{2}}{q}\right) \tag{1}
\end{equation*}
$$

Note that function $1089 t+\frac{49 p^{2}}{t}$ decrease in $\left(0, \frac{7 p}{33}\right]$ and $\frac{p^{2}}{3}<\frac{7 p}{33} \Leftrightarrow p<\frac{7}{11}$.
Thus $1089 q+\frac{49 p^{2}}{q}$ as function of q decrease in $\left(0, \frac{p^{2}}{3}\right]$.
But unfortunately $\frac{p^{2}}{3}$ as upper bound for q isn't good enough for proof of inequality (1) and even more sharp inequality $q \leq \frac{p^{2}}{4-3 p}$ can't provide proof of (1).
In that situation remains only way, that is to use the best upper bound for q which can give a criterion for the solvability of the Vieta's system of equations $a+b+c=1, a b+b c+c a=p, a b c=q$ in real a, b, c, namely inequality
(2) $27 q^{2}-2(9 p-2) q+4 p^{3}-p^{2} \leq 0$.

This inequality solvable in real q iff $p \leq \frac{1}{3}$ and being solved with respect to q in particular give us attainable upper bound for q, namely $q \leq q_{*}:=\frac{9 p-2+2(1-3 p) \sqrt{1-3 p}}{27}$.
Denoting $t:=\sqrt{1-3 p}$ we obtain $p=\frac{1-t^{2}}{3}$ and $q_{*}=\frac{(1+2 t)(1-t)^{2}}{27}$,
where $0 \leq t<1 \Leftrightarrow 0<p \leq \frac{1}{3}$.
Then
$\frac{77 p}{32}+\frac{1}{192}\left(1089 q+\frac{49 p^{2}}{q}\right)-(1+p)^{2} \geq \frac{77 p}{32}+\frac{1}{192}\left(1089 q_{*}+\frac{49 p^{2}}{q_{*}}\right)-(1+p)^{2}=$
$\frac{77}{32} \cdot \frac{1-t^{2}}{3}+\frac{1}{192}\left(1089 \cdot \frac{(1+2 t)(1-t)^{2}}{27}+\frac{49\left(1-t^{2}\right)^{2}}{9} \cdot \frac{27}{(1+2 t)(1-t)^{2}}\right)-\frac{\left(4-t^{2}\right)^{2}}{9}=$
$\frac{77}{32} \cdot \frac{1-t^{2}}{3}+\frac{1}{192}\left(1089 \cdot \frac{(1+2 t)(1-t)^{2}}{27}+\frac{49\left(1-t^{2}\right)^{2}}{9} \cdot \frac{27}{(1+2 t)(1-t)^{2}}\right)-\frac{\left(4-t^{2}\right)^{2}}{9}=$

$$
\frac{t^{2}\left(105 t^{2}-96 t+32\left(1-t^{3}\right)\right)}{144(2 t+1)} \geq 0
$$

because $105 t^{2}-96 t+32\left(1-t^{3}\right)>96 t^{2}-96 t+32\left(1-t^{3}\right)=32(1-t)^{3}>0$.
Proof of inequality
(CL) $\frac{11 \sqrt{3}}{5 R+12 r} \leq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.

In p,q notation $5 R+12 r=\frac{5(p-q)}{4 \sqrt{q}}+12 \sqrt{q}=\frac{5 p+43 q}{4 \sqrt{q}}$ and inequality (CL)
becomes $\frac{44 \sqrt{3} \sqrt{q}}{5 p+43 q} \leq \frac{1+p}{p-q} \Leftrightarrow \frac{44 \sqrt{3}}{1+p} \leq \frac{1}{p-q} \cdot\left(43 \sqrt{q}+\frac{5 p}{\sqrt{q}}\right)=\frac{43 q+5 p}{(p-q) \sqrt{q}} \cdot$.
Since $\frac{5 p}{43}>\frac{p^{2}}{3} \geq q$ then $43 \sqrt{q}+\frac{5 p}{\sqrt{q}}$ decrease as function of q and, therefore,
decrease $\frac{43 q+5 p}{(p-q) \sqrt{q}}$. Hence, $\frac{43 q+5 p}{(p-q) \sqrt{q}}-\frac{44 \sqrt{3}}{1+p} \geq \frac{43 q_{*}+5 p}{\left(p-q_{*}\right) \sqrt{q_{*}}}-\frac{44 \sqrt{3}}{1+p}$
and

$$
\begin{gathered}
\frac{\left(43 q_{*}+5 p\right)^{2}}{\left(p-q_{*}\right)^{2} q_{*}}-\frac{5808}{(1+p)^{2}}=\frac{\left(43 \cdot \frac{(1+2 t)(1-t)^{2}}{27}+5 \cdot \frac{1-t^{2}}{3}\right)^{2}}{\left(\frac{1-t^{2}}{3}-\frac{(1+2 t)(1-t)^{2}}{27}\right)^{2} \frac{(1+2 t)(1-t)^{2}}{27}}-\frac{5808}{\left(1+\frac{1-t^{2}}{3}\right)^{2}}= \\
\frac{27 t^{2}\left(1849 t^{4}-15052 t^{3}+11004 t^{2}+3872 t+352\right)}{(2 t+1)(t-1)^{2}(t-2)^{2}(t+2)^{4}} \geq 0 \text { because } \\
11004 t^{2}+3872 t+352-15052 t^{3}=11004\left(t^{2}-t^{3}\right)+3872\left(t-t^{3}\right)+176\left(1-t^{3}\right)+176>0 .
\end{gathered}
$$

