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In a ΔABC, let a,b,c be its side lengths

R - its circumradius and r - its inradius, prove that

(a) 1/a  1/b  1/c  3 /2r

(b) 1/a  1/b  1/c  1/ 3 1/r  1/R

(c**) 11 3 /5R  12r  1/a  1/b  1/c  1/ 3 5/4R  7/8r.

Solution by Arkady Alt , San Jose, California, USA.
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Well known inequality (Soltan and Meydman)
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be at the same time proof of inequalities in (a)

and (b).

But proof of inequality (CR) is much more difficult then two others.

Proof.

In p,q notation inequality (CR) becomes
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In that situation remains only way, that is to use the best upper bound for q which can
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Proof of inequality

(CL)
11 3
5R  12r

 1
a  1

b
 1c .

In p,q notation 5R  12r 
5p  q
4 q

 12 q 
5p  43q
4 q

and inequality (CL)

becomes
44 3 q

5p  43q

1  p
p  q 

44 3
1  p

 1
p  q  43 q 

5p
q


43q  5p
p  q q

.

Since
5p
43


p2

3
 q then 43 q 

5p
q

decrease as function of q and, therefore,

decrease
43q  5p
p  q q

. Hence,
43q  5p
p  q q


44 3
1  p


43q  5p

p  q q

44 3
1  p

and

43q  5p
2

p  q
2q

 5808
1  p2



43 
1  2t1  t2

27
 5  1  t

2

3

2

1  t2

3


1  2t1  t2

27

2
1  2t1  t2

27

 5808

1  1  t
2

3

2


27t21849t4  15052t3  11004t2  3872t  352

2t  1t  12t  22t  24
 0 because

11004t2  3872t  352  15052t3  11004t2  t3  3872t  t3  1761  t3  176  0.


